16 research outputs found

    Product renovation and shared ownership: sustainable routes to satisfying the world's growing demand for goods

    Get PDF
    It has been estimated that by 2030 the number of people who are wealthy enough to be considered as middle class consumers will have tripled. This will have a dramatic impact on the demands for primary materials and energy. Much work has been carried out on sustainable ways of meeting the World’s energy demands and some work has been carried out on the sustainable production and consumption of goods. It has been estimated that with improvements in design and manufacturing it is possible to reduce the primary material requirements by 30% to produce the current demand for goods. Whilst this is a crucial step on the production side, there will still be a doubling of primary material requirements by the end of the century because of an absolute rise in demand for goods and services. It is therefore clear that the consumption of products must also be explored. This is a key areas of research for the UK INDEMAND centre, which is investigating ways of reducing the UK’s industrial energy demand and demand for energy intensive materials. Our ongoing work shows that two strategies would result in considerable reductions in the demand for primary materials: product longevity and using goods more intensively (which may requires increased durability). Product longevity and durability are not new ideas, but ones that can be applied across a raft of goods as methods of reducing the consumption of materials. With long life products there is a potential risk of outdated design and obsolescence, consequently there is a need to ensure upgradability and adaptability are incorporated at the design stage. If products last longer, then the production of new products can be diverted to emerging markets rather than the market for replacement goods. There are many goods which are only used occasionally; these goods do not normally wear out. The total demand for such could be drastically reduced if they were shared with other people. Sharing of goods has traditionally been conducted between friends or by hiring equipment. The use of modern communication systems and social media could enable the development of sharing co-ops and swap spaces that will increase the utilisation of goods and hence reduce the demand for new goods. This could also increase access to a range of goods for those on low incomes. From a series of workshops it has been found that the principal challenges are sociological rather than technological. This paper contains a discussion of these challenges and explores possible futures where these two strategies have been adopted. In addition, the barriers and opportunities that these strategies offer for consumers and businesses are identified, and areas where government policy could be instigated to bring about change are highlighted

    Thermodynamic insights and assessment of the ‘circular economy’

    Get PDF
    This study analyses the effect on energy use of applying a wide range of circular economy approaches. By collating evidence on specific quantifiable approaches and then calculating and analyzing their combined full supply chain impacts through input-output analysis, it provides a more complete assessment of the overall potential scope for energy savings that these approaches might deliver than provided elsewhere. Assessment is conducted globally, across the EU-27 and in the UK. Overall, the identified opportunities have the potential to save 6%–11% of energy used to support economic activity, worldwide and in the EU, and 5%–8% in the UK. Their potential is equivalent to the total scope for other industrial energy efficiency savings. The potential savings are further divided into those due to sets of approaches relating to food waste, steel production, other materials production, product refurbishment, vehicle provision, construction and other equipment manufacture. Each of these sets of approaches can make a key contribution to the total savings that are possible. Complementary use of energy and exergy metrics illustrates the way in which energy use might change and for the first time provides indication that in most cases other energy efficiency measures are unlikely to be adversely affected by the circular economy approaches. Potential for savings in the energy embodied in each key product input to each major sector is assessed, enabling prioritization of the areas in which the circular economy approaches have the greatest scope for impact and identification of supply chains for which they are underrepresented

    Thermodynamic insights and assessment of the ‘circular economy’

    Get PDF
    This study analyses the effect on energy use of applying a wide range of circular economy approaches. By collating evidence on specific quantifiable approaches and then calculating and analyzing their combined full supply chain impacts through input-output analysis, it provides a more complete assessment of the overall potential scope for energy savings that these approaches might deliver than provided elsewhere. Assessment is conducted globally, across the EU-27 and in the UK. Overall, the identified opportunities have the potential to save 6%–11% of energy used to support economic activity, worldwide and in the EU, and 5%–8% in the UK. Their potential is equivalent to the total scope for other industrial energy efficiency savings. The potential savings are further divided into those due to sets of approaches relating to food waste, steel production, other materials production, product refurbishment, vehicle provision, construction and other equipment manufacture. Each of these sets of approaches can make a key contribution to the total savings that are possible. Complementary use of energy and exergy metrics illustrates the way in which energy use might change and for the first time provides indication that in most cases other energy efficiency measures are unlikely to be adversely affected by the circular economy approaches. Potential for savings in the energy embodied in each key product input to each major sector is assessed, enabling prioritization of the areas in which the circular economy approaches have the greatest scope for impact and identification of supply chains for which they are underrepresented

    Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems

    Get PDF
    Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability

    Energy saving potential of high temperature heat pumps in the UK Food and Drink sector

    Get PDF
    This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Addressing GHG emissions from industry is vital to achieving decarbonisation targets. However, finding alternatives to many industrial energy requirements remains a challenge. Many processes in the food sector require heat at relatively low temperatures (i.e. 80°C to 200°C). High temperature heat pumps under development present a heat source that is efficient (especially if coupled with waste heat sources) and low carbon (especially if powered by decarbonised electricity). This study analysed their potential in the UK Dairy sub-sector and extrapolates this to the wider Food and Drink sector. There is potential to save approximately 164 kt-CO2/yr in the modelled processes. Applied to similar processes across the Food and Drink sector, there is scope to save 2.6 Mt-CO2/yr with projected 2030 grid electricity emissions factors. High temperature heat pumps have the potential to save energy and reduce GHG emissions. These GHG savings will increase further as the electrical grid continues to be decarbonised. While fuel cost savings are possible, these depend upon the processes and become more significant with projected fuel prices.UK Engineering and Physical Sciences Research Counci
    corecore